6 resultados para functional genomics

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Legumes develop root nodules from pluripotent stem cells in the rootpericycle in response to mitogenic activation by a decorated chitin-likenodulation factor synthesized in Rhizobium bacteria. The soybean genes encoding the receptor for such signals were cloned using map-based cloning approaches. Pluripotent cells in the root pericycle and the outer or inner cortex undergo repeated cell divisions to initiate a composite nodule primordium that develops to a functional nitrogen-fixing nodule. The process itself is autoregulated, leading to the characteristic nodulation of the upper root system. Autoregulation of nodulation (AON) in all legumes is controlled in part by a leucine-rich repeat receptor kinase gene (GmNARK). Mutations of GmNARK, and its other legume orthologues, result in abundant nodulation caused by the loss of a yet-undefined negative nodulation repressor system. AON receptor kinases are involved in perception of a long distance, root-derived signal, to negatively control nodule proliferation. GmNARK and LjHAR1 are expressed in phloem parenchyma. GmNARK kinase domain interacts with Kinase Associated Protein Phosphatase (KAPP). NARK gene expression did not mirror biological NARK activity in nodulation control, as q-RT-PCR in soybean revealed high NARK expression in roots, root tips, leaves, petioles, stems and hypocotyls, while shoot and root apical meristems were devoid of NARK RNA. High through-put transcript analysis in soybean leaf and root indicated that major genes involved in JA synthesis or response are preferentially down-regulated in leaf but not root of wild type, but not NARK mutants, suggesting that AON signaling may in part be controlled by events relating to hormone metabolism. Ethylene and abscisic acid insensitive mutants of L. japonicus are described. Nodulation in legumes has significance to global economies and ecologies, as the nitrogen input into the biosphere allows food, feed and biofuel production without the inherent costs associated with nitrogen fertilization [1]. Nodulation involves the production of a new organ capable of nitrogen fixation [2] and as such is an excellent system to study plant – microbe interaction, plant development, long distance signaling and functional genomics of stem cell proliferation [3, 4]. Concerted international effort over the last 20 years, using a combination of induced mutagenesis followed by gene discovery (forward genetics), and molecular/biochemical approaches revealed a complex developmental pathway that ‘loans’ genetic programs from various sources and orchestrates these into a novel contribution. We report our laboratory’s contribution to the present analysis in the field.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Left ventricular (LV) hypertrophy is a risk factor for cardiovascular death, but the genetic factors determining LV size and predisposition to hypertrophy are not well understood. We have previously linked the quantitative trait locus cardiac mass 22 (Cm22) on chromosome 2 with cardiac hypertrophy independent of blood pressure in the spontaneously hypertensive rat. From an original cross of spontaneously hypertensive rat with F344 rats, we derived a normotensive polygenic model of spontaneous cardiac hypertrophy, the hypertrophic heart rat (HHR) and its control strain, the normal heart rat (NHR).

METHODS AND RESULTS: To identify the genes and molecular mechanisms underlying spontaneous LV hypertrophy we sequenced the HHR genome with special focus on quantitative trait locus Cm22. For correlative analyses of function, we measured global RNA transcripts in LV of neonatal HHR and NHR and 198 neonatal rats of an HHR × NHR F2 crossbred population. Only one gene within locus Cm22 was differentially expressed in the parental generation: tripartite motif-containing 55 (Trim55), with mRNA downregulation in HHR (P < 0.05) and reduced protein expression. Trim55 mRNA levels were negatively correlated with LV mass in the F2 cross (r = -0.16, P = 0.025). In exon nine of Trim55 in HHR, we found one missense mutation that functionally alters protein structure. This mutation was strongly associated with Trim55 mRNA expression in F2 rats (F = 10.35, P < 0.0001). Similarly, in humans, we found reduced Trim55 expression in hearts of subjects with idiopathic dilated cardiomyopathy.

CONCLUSION: Our study suggests that the Trim55 gene, located in Cm22, is a novel candidate gene for polygenic LV hypertrophy independent of blood pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coral reef fishes are expected to experience rising sea surface temperatures due to climate change. How well tropical reef fishes will respond to these increased temperatures and which genes are important in the response to elevated temperatures is not known. Microarray technology provides a powerful tool for gene discovery studies, but the development of microarrays for individual species can be expensive and time-consuming. In this study, we tested the suitability of a Danio rerio oligonucleotide microarray for application in a species with few genomic resources, the coral reef fish Pomacentrus moluccensis. Results from a comparative genomic hybridization experiment and direct sequence comparisons indicate that for most genes there is considerable sequence similarity between the two species, suggesting that the D. rerio array is useful for genomic studies of P. moluccensis. We employed this heterologous microarray approach to characterize the early transcriptional response to heat stress in P. moluccensis. A total of 111 gene loci, many of which are involved in protein processing, transcription, and cell growth, showed significant changes in transcript abundance following exposure to elevated temperatures. Changes in transcript abundance were validated for a selection of candidate genes using quantitative real-time polymerase chain reaction. This study demonstrates that heterologous microarrays can be successfully employed to study species for which specific microarrays have not yet been developed, and so have the potential to greatly enhance the utility of microarray technology to the field of environmental and functional genomics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study has utilised comparative functional genomics to exploit animal models with extreme adaptation to lactation to identify candidate genes that specifically regulate protein synthesis in the cow mammary gland. Increasing milk protein production is valuable to the dairy industry. The lactation strategies of both the Cape fur seal (Artocephalus pusillus pusillus) and the tammar wallaby (Macropus eugenii) include periods of high rates of milk protein synthesis during an established lactation and therefore offer unique models to target genes that specifically regulate milk protein synthesis. Global changes in mammary gene expression in the Cape fur seal, tammar wallaby, and the cow (Bos taurus) were assessed using microarray analysis. The folate receptor α (FOLR1) showed the greatest change in gene expression in all three species [cow 12.7-fold (n = 3), fur seal 15.4-fold (n = 1), tammar 2.4-fold (n = 4)] at periods of increased milk protein production. This compliments previous reports that folate is important for milk protein synthesis and suggests FOLR1 may be a key regulatory point of folate metabolism for milk protein synthesis within mammary epithelial cells (lactocytes). These data may have important implications for the dairy industry to develop strategies to increase milk protein production in cows. This study illustrates the potential of comparative genomics to target genes of interest to the scientific community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We take a functional genomics approach to congenital heart disease mechanism. We used DamID to establish a robust set of target genes for NKX2-5 wild type and disease associated NKX2-5 mutations to model loss-of-function in gene regulatory networks. NKX2-5 mutants, including those with a crippled homeodomain, bound hundreds of targets including NKX2-5 wild type targets and a unique set of "off-targets", and retained partial functionality. NKXΔHD, which lacks the homeodomain completely, could heterodimerize with NKX2-5 wild type and its cofactors, including E26 transformationspecific (ETS) family members, through a tyrosine-rich homophilic interaction domain (YRD). Off-targets of NKX2-5 mutants, but not those of an NKX2-5 YRD mutant, showed overrepresentation of ETS binding sites and were occupied by ETS proteins, as determined by DamID. Analysis of kernel transcription factor and ETS targets show that ETS proteins are highly embedded within the cardiac gene regulatory network. Our study reveals binding and activities of NKX2-5 mutations on WT target and off-targets, guided by interactions with their normal cardiac and general cofactors, and suggest a novel type of gainof- function in congenital heart disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Techniques for targeted genetic disruption in Plasmodium, the causative agent of malaria, are currently intractable for those genes that are essential for blood stage development. The ability to use RNA interference (RNAi) to silence gene expression
would provide a powerful means to gain valuable insight into the pathogenic blood stages but its functionality in Plasmodium remains controversial. Here we have used various RNA-based gene silencing approaches to test the utility of RNAi in malaria
parasites and have undertaken an extensive comparative genomics search using profile hidden Markov models to clarify whether RNAi machinery
exists in malaria. These investigative approaches revealed that Plasmodium lacks the enzymology required for RNAi-based ablation of gene expression
and indeed no experimental evidence for RNAi was observed. In its absence, the most likely explanations for previously reported RNAi-mediated knockdown are either the general toxicity of introduced RNA (with global down-regulation of gene expression) or a specific antisense effect mechanistically distinct from RNAi, which will need systematic
analysis if it is to be of use as a molecular genetic tool for malaria parasites.